Mathematical programming with multiple sets split monotone variational inclusion constraints

نویسندگان

  • Zenn-Tsun Yu
  • Lai-Jiu Lin
  • Chih-Sheng Chuang
چکیده

In this paper, we first study a hierarchical problem of Baillon’s type, and we study a strong convergence theorem of this problem. For the special case of this convergence theorem, we obtain a strong convergence theorem for the ergodic theorem of Baillon’s type. Our result of the ergodic theorem of Baillon’s type improves and generalizes many existence theorems of this type of problem. Two numerical examples are given to demonstrate our results. As applications of our convergence theorem of the hierarchical problem, we study the unique solution for the following problems: mathematical programming with multiply sets split variational inclusion and fixed point set constraints; mathematical programming with multiple sets split variational inequalities and fixed point set constraints; the variational inequality problem with a system of mixed type equilibria and fixed point set constraints; the variational inequality problem with multiple sets split system of mixed type equilibria and fixed point set constraints; mathematical programming with a system of mixed type equilibria and fixed point set constraints. We give iteration processes for these types of problems and establish the strong convergence for the unique solution of these problems. For our special case, our results can be reduced to the following problems: the unique minimal norm solution of the multiply sets split monotonic variational inclusion problems; the minimum norm solutions for the multiple sets split system of mixed type equilibria problem; the minimum norm solution of the system of mixed type equilibria problem. Our results will have many applications in diverse fields of science.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Strong convergence theorem for a class of multiple-sets split variational inequality problems in Hilbert spaces

In this paper, we introduce a new iterative algorithm for approximating a common solution of certain class of multiple-sets split variational inequality problems. The sequence of the proposed iterative algorithm is proved to converge strongly in Hilbert spaces. As application, we obtain some strong convergence results for some classes of multiple-sets split convex minimization problems.

متن کامل

The Split Hierarchical Monotone Variational Inclusions Problems and Fixed Point Problems for Nonexpansive Semigroup

The purpose of this paper is to study a split hierarchical monotone variational inclusion problem which includes split variational inequality problems, split common fixed point problems, split monotone variational inclusion problems, split convex minimization problems, etc., as special cases, and fixed point problems for nonexpansive semigroup in the setting of Hilbert spaces. For solving this ...

متن کامل

First-Order Optimality Conditions for Elliptic Mathematical Programs with Equilibrium Constraints via Variational Analysis

Mathematical programs in which the constraint set is partially defined by the solutions of an elliptic variational inequality, so-called “elliptic MPECs”, are formulated in reflexive Banach spaces. With the goal of deriving explicit first order optimality conditions amenable to the development of numerical procedures, variational analytic concepts are both applied and further developed. The pap...

متن کامل

A SYSTEM OF GENERALIZED VARIATIONAL INCLUSIONS INVOLVING G-eta-MONOTONE MAPPINGS

We introduce a new concept of general $G$-$eta$-monotone operator generalizing the general $(H,eta)$-monotone operator cite{arvar2, arvar1}, general $H-$ monotone operator cite{xiahuang} in Banach spaces, and also generalizing $G$-$eta$-monotone operator cite{zhang}, $(A, eta)$-monotone operator cite{verma2}, $A$-monotone operator cite{verma0}, $(H, eta)$-monotone operator cite{fanghuang}...

متن کامل

On Fixed Point Results for Hemicontractive-type Multi-valued Mapping, Finite Families of Split Equilibrium and Variational Inequality Problems

In this article, we introduced an iterative scheme for finding a common element of the set of fixed points of a multi-valued hemicontractive-type mapping, the set of common solutions of a finite family of split equilibrium problems and the set of common solutions of a finite family of variational inequality problems in real Hilbert spaces. Moreover, the sequence generated by the proposed algori...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014